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We present a self-consistent Schrödinger–Poisson scheme for simulation of electrostatic quantum dots de-
fined in gated two-dimensional electron gas formed at n-AlGaAs /GaAs heterojunction. The computational
method is applied to a quantitative description of transport properties studied experimentally by Elzermann et
al. �Appl. Phys. Lett. 84, 4617 �2004��. Our three-dimensional model describes the electrostatics of the entire
device with a quantum dot that changes shape and floats inside a gated region when the applied voltages are
varied. Our approach accounts for the metal electrodes of arbitrary geometry, includes magnetic field applied
perpendicular to the growth direction, electron-electron correlation in the confined electron system, and its
interaction with the electron reservoir surrounding the quantum dot. We calculate the electric field, the space
charge distribution, and energies as well as wave functions of confined electrons to describe opening of two
transport channels between the reservoir and the confined charge puddle. We determine the voltages for
charging the dot with up to four electrons. The results are in qualitative and quantitative agreement with the
experimental data.
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I. INTRODUCTION

A quest for a nanodevice that could store a bit of quantum
information in the confined electron spin1,2 and allow for its
manipulation is a main motivation for research on gated elec-
trostatic quantum dots. Fabrication of a spin quantum gate
requires application of multiple quantum dots coupled in
way that can be controlled during the device operation. First,
electrostatic quantum dots were formed in a vertical semi-
conductor heterostructure3–7 containing a quantum well sur-
rounded by a metal gate that was responsible for formation
of the lateral confinement. The strength of the tunnel cou-
pling between the vertical dot and electron reservoirs de-
pends on the applied barrier thickness and composition, and
therefore, it is fixed for each device. Similarly, for vertical
artificial molecules, the interdot coupling is defined at the
production stage.

A full control of the interdot coupling is possible in quan-
tum dots formed in gated two-dimensional electron gas.8–14

These structures are produced by deposition of multiple
gates on top of the n-AlGaAs /GaAs structure containing a
two-dimensional electron gas at the heterojunction. The sys-
tem of gates is designed to locally deplete the electron gas in
order to tailor a quantum dot of the surrounding electron
reservoir. The voltages applied to the multiple gates define
the confinement potential for the trapped electrons and con-
trol the tunnel barrier between the dot and the reservoir.
Thus, the coupling of the confined artificial atom to the en-
vironment can be intentionally tuned from an open to a
closed dot regime. For nearly open dots, the Kondo effect
and cotunneling phenomena are observed.15 Coupled dots
with voltage tunable interdot barriers are also produced.13–16

Quantum dots formed in the gated two-dimensional electron
gas are used for investigation of spin dependent transport17

and confined spin relaxation.18 A capacitive coupling be-
tween the dot and a quantum point contact defined in the

same structure8–12 is used to probe the confined states by the
conductance measurements. The purpose of the present paper
is to provide a theoretical description of a quantum dot
formed in the gated two-dimensional electron gas. We focus
our attention on the nanodevice that is probed by the quan-
tum point contact as described in Refs. 9 and 10.

The electrostatic confinement potential in vertical quan-
tum dots was thoroughly studied in Refs. 19–26. Less atten-
tion was paid to dots based on the gated two-dimensional
electron gas. In particular, a theory for a double planar dot14

was provided in Refs. 27 and 28. Reference 16 describes a
structure of a triple quantum dot. Theoretical modeling of
planar dots is for several reasons more difficult than model-
ing of vertical structures. In vertical dots, the electrons are
confined inside a relatively deep quantum well with the lat-
eral confinement strength controlled by a single gate. In pla-
nar structures, the confinement is entirely due to the voltages
that are applied to multiple gates and the formed potential
cavity is typically shallow. Therefore, both the confinement
potential and the few-electron eigenproblem have to be cal-
culated with a special care. Moreover, as we show below, the
gates not only fix the strength of the dot confinement but also
change the shape of confined charge island which floats with
the voltages inside the gated area. Interaction of the confined
electrons with the reservoirs is also more complex due to
variation of the depleted gas region with the applied poten-
tials. The vertical dots19–25 often have circular symmetry,29

which is not the case for the planar structure discussed be-
low.

II. THEORY

A. Model of the structure

The nanodevice9,10 which we aim to describe is con-
structed on a basis of a planar semiconductor heterostructure
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of GaAs /n-Al0.3Ga0.7As in which the two-dimensional elec-
tron gas is created at the GaAs side of the junction. A cross
section of the layer structure is presented in Fig. 1. On the
substrate side, there is a 1500 nm thick layer of undoped
GaAs with a blocking AlGaAs barrier deposited on top.
Lower part of the barrier �20 nm thick� is undoped and the
upper �65 nm� is heavily doped with donors. On top of the
barrier, there is a 5 nm thin layer of n-doped GaAs. The
donor states in AlGaAs correspond to energies that are
200 meV above the conduction band minimum of GaAs.
Therefore, the electrons pass to the GaAs layer but stay lo-
calized under the barrier due to the Coulomb attraction by
the charge of ionized donors.

In our model, we assume the shape of gates deposited on
top of the structure �see Fig. 2� according to Refs. 9 and 10.
A negative voltage applied to the electrodes depletes the
electron gas underneath and forms a lateral confinement po-
tential in the center of the gated area. For properly adjusted
voltages, a few electrons stay localized in the center of the
structure forming an artificial atom. The electrons are con-
fined in the vertical direction by the barrier formed due to the
GaAs /AlGaAs conduction band offset Ub. The electrostatic
potential �elst�r� is responsible for the lateral confinement as
well as for the potential that closes the dot from the substrate
side. The quantum dot confinement potential is therefore ex-
pressed by

Uconf�r� = Ub�z� − �e��elst�r� . �1�

Here, Ub equals zero in GaAs layer and the conduction band
offset in the AlGaAs barrier. The electrons are additionally
confined by an in-plane magnetic field of 10 T applied par-
allel to the surface of the layer structure.8,9 Application of a
strong magnetic field within the plane of confinement30 was
previously discussed in context of tuning �reduction� of the
electron tunnel coupling for vertical artificial molecules. To
the best of our knowledge, the Schrödinger–Poisson problem
for the two-dimensional electron gas with an in-plane orien-
tation of the magnetic field was never solved previously.

B. Sources of electrostatic potential

The total electrostatic potential �tot�r� is influenced by
voltages applied between the substrate and metal electrodes
on top of the structure as well as by the charge distribution
inside the device. The charge density �tot�r� is a sum of three
contributions that have different natures and distributions,

�tot�r� = �eqd�r� + �d�r� + �el�r� . �2�

The first contribution �eqd�r� is the distribution of the charge
confined in the quantum dot that is found by the solution of
a few-electron quantum eigenproblem that is in the present
work obtained by the configuration interaction method. The
second contribution �d�r� is the ionized donor space charge
in the AlGaAs barrier, and the third �el�r� is the charge den-
sity of the electron gas.

According to the superposition principle, the total electro-
static potential �tot�r� can be expressed as a sum of contri-
butions of all the charge densities. We separate the potential
due to the confined electrons �eqd of the total potential. In
this way, we obtain a component of the potential �elst that
enters formula �1� for the confinement potential of the elec-
trostatic dot,

�tot�r� = �eqd�r� + �elst�r� . �3�

Potential of the dot-confined charge is calculated directly
from the Coulomb law,

�eqd�r� =
1

4���0
� �eqd�r��

�r − r��
dr�. �4�

Potential �elst of all the other sources is found from the Pois-
son equation,

�2�elst�r� = −
��r�
��0

. �5�

The boundary conditions are naturally given for the total
potential �tot�r�. The boundary conditions for the Poisson
equation �Eq. �5�� are calculated by a simple subtraction,

�elst�r� = �tot�r� − �eqd�r� . �6�

Charge density ��r� in Eq. �5� is a sum of the charge densi-
ties of ionized donors and of the electron gas,

��r� = �d�r� + �el�r� . �7�

The donors are ionized in the spatial region where the total

substrate
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metal gates

FIG. 1. �Color online� Structure of layers used for formation of
a gated quantum dot in the two-dimensional electron gas �according
to Ref. 9�.
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FIG. 2. Geometry, size, and position of the metal gates depos-
ited on top of the semiconductor heterostructure �according to Ref.
9�.
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electron potential energy calculated with respect to GaAs
layer is larger than the donor binding energy. For the donor
energy level taken as the reference energy, we obtain the
ionization condition,

�d�r� = �0 for − �e��tot�r� � ED

�e�nD�r� for − �e��tot�r� � ED,
� �8�

where nD�r� is the density of donor impurities and ED is the
donor binding energy. Assumption of a homogenous �con-
tinuous� ionized donor distribution is justified by the pres-
ence of an undoped AlGaAs buffer �see Fig. 1�. The elec-
trons confined below the barrier perceive a smooth
superposition of potential due to discrete charges similar to
the one obtained for uniform space charge.

Calculation of �el�r�—the second charge density in Eq.
�7� that corresponds to the electron gas confined at the
heterojunction—is a nontrivial task. It can be exactly evalu-
ated only in the asymptotic region, i.e., at a large distance of
the electrodes. In the neighborhood of the electrodes, one has
to introduce an approximate treatment �see Sec. II D�.

C. Potential and charge distribution in the asymptotic region

At a large distance of the electrodes, the electric field is
parallel to the growth direction �z� and the electrostatic po-
tential does not depend on the other two coordinates. The
potential distribution results from an equilibrium between the
ionized donors in the AlGaAs layer and the electron gas con-
fined below. We choose the y axis as parallel to the external
magnetic field. We adapt the Landau gauge as

A�r� = �− Bz,0,0� , �9�

which leads to the Hamiltonian of an electron confined at the
heterojunction,

H�r� = −
�2

2m
	 �2

�x2 +
�2

�y2 +
�2

�z2
 + i��cz
�

�x
+

m

2
�c

2z2

+ Ub�z� − �e��elst�z� , �10�

where �c= �e�B
m and m is the electron band mass. Since this

Hamiltonian commutes with momentum in both x and y di-
rections, its eigenfunctions are expected to be of form

	as�r� = C exp�iqx�exp�iky��as�z� . �11�

Eigenequation for �as�z� is obtained by substitution of Eq.
�11� into Eq. �10�,

H�z��nq
as �z� = 
nq�nq

as �z� , �12�

where

H�z� = −
�2

2m

�2

�z2 +
m

2
�c

2�z − z0�2 + Ub�z� − �e��elst
as �z� ,

�13�

with z0=�q /m�c.
Eigenvalues 
nq and the eigenfunctions �nq

as �z� are labeled
by a natural quantum number n and depend on the wave
vector q in the direction perpendicular to the magnetic field

direction. Wave vector q enters the Hamiltonian operator
�Eq. �13�� through shifted harmonic oscillator minimum z0.
The total electron energy eigenvalues are given by

Enkq = 
nq +
�2k2

2m
. �14�

The electrons confined at the heterojunction have energies
below the Fermi energy. In the present calculations, the
Fermi energy is taken as the reference energy level. Only the
states with Enkq�0 can be confined at the heterojunction.
Given the H�z� eigenfunctions, one calculates the charge
density of the electron gas,

�el
as�z� = − 2�e� �

nkq

Enkq�0

�	nkq
as �x,y,z��2

= − �
n

�e�
2�2�

Enkq�0
dkdq��nq

as �z��2

= − �
n

�e�
2�2�


nq�0
dq�

−kF

kF

dk��nq
as �z��2, �15�

where kF=�−
2m
nq

�2 . By integration over k, we obtain

�el
as�z� = − �

n

�e�
�2�


nq�0
dq�−

2m
nq

�2 ��nq
as �z��2. �16�

Apart from the electron gas, another source of the electric
field is the ionized donor distribution �d calculated according
to Eq. �8� in which we identify �tot

as =�elst
as since at an asymp-

totically large distance of the quantum dot potential �eqd van-
ishes. Finally, the electrostatic potential is calculated from a
single-dimensional Poisson equation,

�2

�z2�elst
as �z� = −

�el
as�z� + �d�z�

��0
. �17�

Since �el
as appearing in Eq. �17� is calculated with the

Schrödinger equation �Eq. �12��, which in turn contains the
electrostatic potential, both the equations are solved in an
iteration until self-consistency is reached. Equation �12� is
solved below the barrier in a computational box long enough
to allow the electron charge density �Eq. �16�� to vanish be-
fore its end. The equilibrium solution is obtained when two
conditions are met. The first one results from the charge neu-
trality which requires that the number of ionized donors is
equal to the number of electrons trapped at the interface,
which results in vanishing electric field at both ends of the
region where the Poisson equation �Eq. �17�� is solved. In
fact, whenever a self-consistency of Eqs. �12� and �17� is
obtained the electric field �potential derivatives� at both ends
of the computational box vanish. The second equilibrium
condition requires that the number of ionized donors is such
that the variation of the electric potential on the entire space
charge �on both sides of the heterojunction� equalizes the
jump in the conduction band at the GaAs /AlGaAs interface.
The latter is due to the fact that the electrons occupy all the
states below the Fermi energy. This includes both the donor
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states in the barrier �not all the donors are ionized� and the
states trapped below the barrier.

The surface density of the electron charge accumulated
below the barrier is obtained by integration of �el

as�z� along
the growth direction,

�as = �
−





dz�el
as�z� , �18�

with the charge neutrality condition

�D
as = − �as, �19�

where �D
as is the surface density of ionized donors. The sur-

face densities depend on the conduction band offset. Under
the assumption of a homogenous donor distribution, the
asymptotic ionization range d fulfills the condition �D

as

=nDd. The second equilibrium condition is obtained for a
properly chosen d. For a nominal composition of the barrier
AlxGa1−xAs with x=0.27, the barrier height is Ub
=229 meV. For that value, one obtains the asymptotic sur-
face density of �as=3.5�10−11 cm−2, which is close to the
nominal experimental value8 of 2.9�10−11 cm−2. The devia-
tion of the calculated density off the nominal value may re-
sult from the neglect of the exchange interaction in the elec-
tron gas. We decided to reduce the barrier height to Ub
=200 meV for which the calculated density is equal to its
nominal value.

The potential and the electron density calculated for the
asymptotic region according to the procedure explained
above are presented in Fig. 3. From the potential dependence
on z, we can see that the charge neutrality condition �zero
electric field at both ends of the box� is fulfilled. We also
notice that the electrostatic potentials of both sides of the
junction differ exactly by the donor binding energy. This is
because in the discussed structure the donor impurity level in
the heavily doped AlGaAs layer defines the Fermi energy.

D. Potential and charge distribution near the quantum dot

Under the electrodes, the electron potential energy is still
positive also below the AlGaAs barrier which removes the
electron gas from the region below the electrodes. The elec-
tron potential energy decreases with the growing distance of
the gates and it eventually becomes negative in the region
where the electron gas is not completely depleted. The spa-
tial variation of the electron density is crucial for the shape
and width of the potential barriers which separate the quan-
tum dot from the electron reservoirs. An account for the elec-
tron dependence on the potential energy is taken in a follow-
ing approximate manner. We assume that the electron gas
density is zero wherever the local potential energy exceeds
the Fermi energy �EF=0�. In region where the local potential
energy is negative, we assume that the electron density is
proportional to its absolute value

�el�x,y,z� = �0 for � � 0

��el
as�z� for � � 0

� �20�

for

� =
− �e��tot�x,y,zc� + Ub�zc�

− �e��tot
as �zc� + Ub�zc�

, �21�

with ��1, where �tot
as =�elst

as and zc is the center of mass of
the asymptotic electron density,

zc =
1

�as � dz�el
as�z�z . �22�

Formula �20� simulates the depletion of the electron gas in
the region of electron potential energy increased from the
asymptotic value. In the asymptotic region, � tends to 1,
which guarantees that the known value of the electron den-
sity is found far away from the gates.

E. Boundary conditions for Poisson equation in three
dimensions

Poisson equation �Eq. �5�� is solved in a three-
dimensional rectangular region which contains the quantum
dot and a sufficiently large part of the electrodes. A standard
test for the acceptable size of the box consists in performing
the calculation in function of the box dimensions. We find
that the results eventually saturate for a rectangular box of
side lengths Lx=Ly =600 nm and Lz=400 nm. The position
of the box with respect to the electrodes is presented in Fig.
2. In the growth direction �z�, the box covers 200 nm on both
sides of the AlGaAs /GaAs heterojunction. In the calcula-
tions, we assume that the computational box above the sur-
face of the nanodevice is filled with material of GaAs dielec-
tric constant.

A unique solution of the Poisson equation is obtained for
boundary condition given on the surface of the computa-
tional box and on the metal electrodes that are inside the
integration region. We calculate the conditions for �elst ac-
cording to Eq. �6�. On the electrodes, the total potential is
constant and determined by applied voltages. On the surface
of the electrodes, we assume Dirichlet boundary conditions,
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FIG. 3. �Color online� Electron potential energy �solid line� and
the charge density of the electron gas �dashed curve� at the
AlGaAs /GaAs heterojunction �GaAs is at the positive side of z�.
Thin horizontal dashed line shows the Fermi energy pinned at the
donor impurity level in AlGaAs. ED is the donor binding energy
that enters formula �8�.
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�tot = UX + US, �23�

where X= P, T, M, and R enumerates the electrodes �see Fig.
2�, UX is the applied voltage, and US is the Schottky potential
which at the metal/GaAs contact equals US=−0.65 V. On the
lateral sides of the computational box, we apply Neumann
boundary conditions,

n · ��tot = 0, �24�

where n is the vector normal to the surface. The Neumann
conditions are consistent with the Gauss law for charge neu-
trality of the computational box content. On the vertical
walls of the box �parallel to the growth direction z�, this
boundary condition is equivalent to the assumption that the
electric field is perpendicular to the heterojunction, which
agrees with the boundary condition used in the asymptotic
region.

F. Electrons confined in the quantum dot

The potential minimum in the central region between the
electrodes can trap several electrons provided that the ap-
plied voltages are not excessively negative. The Hamiltonian
for the system of N electrons with Landau gauge writes

HN = �
i=1

N 	−
�2

2m
�i

2 + i��c�zi − zo�
�

�xi
+

m

2
�c

2�zi − zo�2

+ Ub�z� − �e��elst�ri�
 + �
j=1

N

�
i�j

N
e2

4���0�ri − r j�
. �25�

The eigenproblem HN	N=EN	N is solved with a configura-
tion interaction approach in the basis of Slater determinants
built of single-electron wave functions that are calculated
with a finite-difference technique on a three-dimensional
mesh. The mesh for the Schrödinger equation has the same
�x, �y, and �z spacings as the one applied for the Poisson
equation. The Schrödinger computational box can be of
smaller than the one for the Poisson problem since the wave
functions vanish far from the center of the dot where the
electrostatic potential is large. The �x ,y� position of the cen-
ter of the Schrödinger mesh moves with the applied voltages.
Its center is chosen in the point where the electrostatic po-
tential is minimal. We found that a mesh of 19�19 points in
the �x ,y� plane entirely covers the region of electron confine-
ment. In the z direction, 15 mesh points below the
GaAs /AlGaAs heterojunction are applied. The convergence
for the ground state energy of four electrons is achieved for
the basis containing all the Slater determinants that can be
constructed of the wave functions of ten lowest-energy
single-electron levels.

The parameter zo introduced by the gauge transformation
is taken to minimize the total energy of N electrons. In our
calculations, we take zo
12 nm which coincides with the
center of the density of the dot-confined electrons31 �see also
Fig. 3�.

The few-electron wave function is used to evaluate the
confined charge density,

�eqd�r1� = − �e� � dr2dr3 ¯ drN�	N�r1,r2,r3, . . . ,rN��2.

�26�

The ground-state energies for N and N−1 electrons deter-
mine the electrochemical potential of the N-electron quantum
dot,

�N = EN − EN−1. �27�

The dot is filled with exactly N electrons when �N�EF
��N+1. Charging lines that are detected in the experiment
correspond to �N=EF.

G. Numerical procedure and self-consistency

The Poisson equation �Eq. �5�� is solved on a three-
dimensional mesh with a finite difference method. The ap-
plied mesh steps �x=�y=12.5 nm and �z=2 nm are suffi-
cient to describe the charge distributions and the shapes of
electrodes. Smaller step in the growth direction is necessary
because of a strong localization of the electron gas at the
interface. Same step sizes are applied in the Schrödinger
equation.

According to expression �7�, the charge density that enters
the Poisson equation �Eq. �5�� is a sum of charge densities of
ionized donors that depend on the potential in a manner de-
fined by Eq. �8� and the electron gas accumulated at the
GaAs /AlGaAs interface. The latter depends on the total po-
tential according to Eq. �20�. Electrons trapped by the quan-
tum dot are the third charge density �Eq. �26�� present in the
nanodevice. The Schrödinger–Poisson calculations are iter-
ated until the self-consistency of the three charge distribu-
tions with the total potential is obtained. The iteration ac-
counting for the dependence of the electrons and ionized
donors on the electrostatic potential requires application of
an under-relaxation technique to ensure stability.20,21 The
under-relaxed iteration is usually slowly convergent and re-
quires several hundred thousands iteration for the entire
mesh. The convergence is radically improved for a strategy
of simulated cooling of the system. The measurements are
performed at temperatures of several millikelvins, for which
occupation of electron states in Eqs. �8� and �20� has a nearly
binary distribution. For nonzero temperatures, we replace the
formulas for the distribution of ionized donors and the elec-
tron gas used in the above theory by expressions accounting
for the Fermi statistics,

�d�r� =
�e�nD�r�

1 + exp	 �e��tot�r� + Ed

kT

 , �28�

which tends to distribution given by �8� in T=0 limit. For the
electron gas at the interface, we use the formula

�el�r� =
��el

as�z�

1 + exp	− �e��tot�x,y,z0� + Ub�z0�
kT


 , �29�

which in the limit T→0 tends to Eq. �20� with � given in Eq.
�21�. We start the iteration at T=15 K for which the conver-
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gence is quickly reached. Next, the temperature is gradually
reduced to its nominal value. With the simulated cooling, the
convergence is obtained with an overall number of iterations
that is reduced ten times.

III. RESULTS

The numerical procedure described above was applied for
the device described in Ref. 9. Basic parameters of the nan-
odevice including composition and width of the semiconduc-
tor layers, the position and shape of the gates, and the ap-
plied voltages are taken according to the experimental data.9

The theory contains a single free parameter: the dopant con-
centration in the AlGaAs barrier, which is not known with a
sufficient precision since the position of the transmission
lines turns out to be extremely sensitive to its even small
variation. The donor density appearing in formulas �8� and
�28� was set to reproduce the charging of the dot with the
first electron when the voltages are set as in the experiment
�see below�.

The two-dimensional electron gas in the asymptotic re-
gion acts as an electron reservoir whose electrochemical po-
tential is set by the voltage of the source and drain that are
connected to the electron gas in the asymptotic region. We
take the potential applied to the source, drain, and the elec-
tron gas as the reference value for the voltages VS=VD=0.
Following the experiment,9 we assume that voltages applied
to the electrodes are VP=0, VT=1.5 V, VM =−1.07 V, and
VR=−0.96 V. Under these voltages, a first electron occupies
the dot.9 Figures 4�a� and 4�b� present the electrostatic po-
tential distribution in the x ,y plane for z=zo=12 nm �used in
Eq. �25�� calculated for nD=20�1016 cm−3 and nD=25
�1016 cm−3, respectively. In both figures, the blue line
shows the zero of the electrostatic potential. Note that in Fig.
4�a�, the zero potential is found far from the center of the
device which indicates that the dot cannot trap any electrons.
In Fig. 4�b�, the zero level encircles quite a large region
which turns out to trap several electrons and not a single one.
We found that a single electron occupies the dot with the
zero binding energy for the donor concentration nD
=21.641�1016 cm−3. The corresponding potential profile in

presented on a surface plot in Fig. 4�c�. The potential has a
well developed minimum of negative potential that is just
enough to trap a single electron. For the applied voltages, the
oscillating plunger gate �P� voltage takes the electron out of
the dot to the reservoir and attracts it back with the electron
tunneling along the transmission channel that is opened par-
allel to the x direction.

Figure 5 presents the shape of the confinement potential
near the center of the quantum dot for nD=21.641
�1016 cm−3 and voltages listed above. We plotted the elec-
tron potential energy along the straight lines parallel to the x,
y, and z axes passing through the point in which the potential
energy is minimal. The confinement potential is parabolic
only in the y direction �typically ��y 
4.6 meV�. In the
growth direction �z�, the confinement takes a form of a tri-
angular quantum well similar to the potential in the

(a)

(b)

(c)

FIG. 4. �Color online� Electron potential energy U�x ,y�=−�e��elst�x ,y ,zo� calculated at a distance of zo=12 nm of the AlGaAs barrier for
voltages VP=0, VT=1.5 V, VM =−1.07 V, and VR=−0.96 V. Assumed donor impurity concentration is nD=20�1016 cm−3 in �a�, nD=25
�1016 cm−3, in �b� and nD=21.641�1016 cm−3 in �c�. Blue line shows the U=0 contour.
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FIG. 5. �Color online� Electron potential energy calculated for
voltages VP=0, VT=1.5 V, VM =−1.07 V, VR=−0.96 V, and the do-
nor concentration nD=21.641�1016 cm−3 calculated along the lines
that are parallel to one of the axes �solid line to z, dashed line to y,
and dotted line to the z axis� and pass through the potential mini-
mum �xmin,ymin,zmin�. The solid line is therefore V�x�
=U�x ,ymin,zmin�, the dashed curve is V�y�=U�xmin,y ,zmin�, and the
dotted line is V�z�=U�xmin,ymin,z�. Dashed-dotted line shows the
Fermi energy �U=0�.
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asymptotic region plotted in Fig. 3. In the x direction, the
potential minimum is very shallow. The electron is kept at
this minimum, thanks to the magnetic field �parallel to the y
axis�. Magnetic field assists in the electron localization at
even shallow potential cavity.

Formation of a single-electron artificial atom is obtained
also for other voltages. Lowered VM voltage results in an
increase of the electron potential energy in the center of the
nanodevice that can be compensated by an increase of VR. A
transmission line can be traced on the �VM ,VR� plane. Simi-
lar transmission lines are observed for the tunneling of the

second electron from and into the dot. In Fig. 6, we pre-
sented the transmission lines calculated for 1, 2, 3, and 4
electrons which are compared to the experimental results.9

We note that the calculations very well reproduce both the
slope and the positions of the transmission lines. The experi-
mental lines for the first and the second electrons vanish for
larger VM, which is due to the increase of the potential bar-
rier closing the transmission channel. For third and fourth
electrons, the lines reappear for larger VM, which is ex-
plained by opening of a second transmission channel.

For the nominal donor concentration, the potential cavity
is shallower, so less negative voltages correspond to trans-
mission lines. The results calculated for nD=20�1016 cm−3

are similar to the ones presented in Fig. 6, the curves run
parallel to the experimental data but they visibly shifted to
less negative potentials in the VM ,VR plane.

The increase of the potential barrier and the formation of
the second transmission channel can be observed in Fig. 7.
Figures 7�a�–7�c� show the electron potential energy under
assumption of a single dot-confined electron for voltages
�VM ,VR� indicated in Fig. 6 by black dots marked by �a�, �b�,
and �c�, respectively. The corresponding voltages are
�−1.07,−0.96 V� �point �a� in Fig. 6�, �−1.25,−0.87 V�
�point �b��, and �−1.4,−0.8 V� ��c��. Left transmission chan-
nel that is opened in Fig. 7�a� is closed in Fig. 7�b�. In Fig.
7�c�, the barrier blocking the right transmission channel
starts to go down. It is still high enough to block the electron
transfer. Figures 7�d�–7�f� present the electron potential en-
ergy for the third transmission line of Fig. 6 and the pairs of
voltages
�−1.07,−0.9 V� �point �d� in Fig. 6�, �−1.25,−0.8 V� �point
�e��, and �−1.4,−0.73 V� ��f��. In Fig. 7�e�, we notice closing

1.1 1.2 1.3 1.4
V [V]

0.8

0.9
V

[V
]

M

R
-

-

- - - -

N=0

N=1

N=2

N=3
N=4

a

b

c

d

e

f

FIG. 6. �Color online� Transmission lines as calculated �solid
lines� and measured �Ref. 9� �thick dashed lines�. N stands for the
number of electrons that is fixed between the transmission lines.
The dots marked by letters �a�–�f� correspond to voltages for which
the potential distribution is presented in Fig. 7.
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FIG. 7. �Color online� Equipotential contours and regions of negative electron potential energy �plotted in blue� for nD=21.641
�1016 cm−3 at 12 nm of the barrier. The voltages corresponding to plots �a�–�f� are marked in Fig. 6 by black dots �for the exact numbers,
see text�.
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of the left channel and a distinct decrease of the barrier
blocking the right channel in Fig. 7�f�. It is remarkable that
opening the left transmission channel—perpendicular to the
magnetic field direction—requires much greater reduction of
the left barrier than in the case of the other channel that is
parallel to the magnetic field.

A quantity of experimental interest which cannot be di-
rectly measured is the voltage-to-energy conversion factor. It
can only be extracted from a numerical simulation. Accord-
ing to our results, the derivatives of the minimal potential
energy in the center of the dot with respect to the voltage
perturbation applied to subsequent gates �see Fig. 3� are
�U0

�VG
=0.16, 0.1, 0.08, and 0.2 meV /V for G=T, M, P, and R,

respectively.
Another feature that is important for the experiment but

cannot be easily measured is the distribution of the electron
gas that surrounds the quantum dot that we present in Fig. 8.
The electron gas is removed from under the electrodes and
separated from the quantum dot region by potential barriers.
In the white region of Fig. 8, the electron density is zero. It
grows with growing distance of the gated area reaching 2.9
�10−11 e cm−2 in the asymptotic region.

Interaction of the confined electrons with the electron gas
leads to an appearance of nonlinear effects in the
Schrödinger equation32,33 for the dot-confined electrons. The
nonlinear effects increase the electron binding energies and

result in self-focusing mechanism for a single confined elec-
tron. An account of this self-focusing potential is taken in the
Poisson equation �Eq. �5��. The Poisson equation does not
account for the energy relaxation of the dot-confined-
electron system to the reservoir.33 The energy relaxation
leads to a decoherence of the dot-confined quantum states.
The energy relaxation rate is likely to be significant due to
small density of the electron gas in the neighborhood of the
dot.33

IV. SUMMARY

We presented a theory describing phenomena appearing in
a multielectrode device of gated two-dimensional electron
gas containing a quantum dot. In the asymptotic region of a
large distance from the gated area, the calculation consists in
solution of a single-dimensional Poisson-Schrödinger prob-
lem for the electron gas in a strong magnetic field parallel to
the semiconductor surface. Solution in the asymptotic region
is used to determine the electron gas density in the three-
dimensional Poisson–Schrödinger problem for the gated re-
gion with a quantum dot. The energies and charge densities
of several confined electrons were calculated with a configu-
ration interaction approach. The presented theory includes a
single fitting parameter—the donor concentration. All the
other device parameters, the layer structure, the shape, size,
and position of the electrodes as well as the applied magnetic
field vector, are taken of the experiment.8–10 The slope and
positions of the transmission lines were reproduced with a
very good quantitative agreement with the experiment. We
discussed the electric field distribution in the device for volt-
ages corresponding to transmission lines observed in Ref. 9
with a particular attention to the inhomogeneities creating
the quantum dot confinement and the surrounding potential
barriers that separate the artificial atom of the electron gas.

For voltages corresponding to the transmission lines, the
most weakly bound electron is stimulated to oscillate be-
tween the dot and the reservoir by the oscillating plunger
voltage. We demonstrated opening and closing of two trans-
mission channels in the barriers that allow for the oscillations
of the confined charge.
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